Rule-based Segmentation of Lidar Point Cloud for Automatic Extraction of Building Roof Planes

نویسندگان

  • Mohammad Awrangjeb
  • Clive S. Fraser
چکیده

This paper presents a new segmentation technique for LIDAR point cloud data for automatic extraction of building roof planes. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups: ground and nonground points. The ground points are used to generate a ‘building mask’ in which the black areas represent the ground where there are no laser returns below a certain height. The non-ground points are segmented to extract the planar roof segments. First, the building mask is divided into small grid cells. The cells containing the black pixels are clustered such that each cluster represents an individual building or tree. Second, the non-ground points within a cluster are segmented based on their coplanarity and neighbourhood relations. Third, the planar segments are refined using a rule-based procedure that assigns the common points among the planar segments to the appropriate segments. Finally, another rule-based procedure is applied to remove tree planes which are small in size and randomly oriented. Experimental results on the Vaihingen data set show that the proposed method offers high building detection and roof plane extraction rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Segmentation of Lidar Data at Different Height Levels for 3d Building Extraction

This paper presents a new LiDAR segmentation technique for automatic extraction of building roofs. First, it uses a height threshold, based on the digital elevation model to divide the LiDAR point cloud into ‘ground’ and ‘non-ground’ points. Then starting from the maximum LiDAR height, and decreasing the height at each iteration, it looks for coplanar points to form planar roof segments. At eac...

متن کامل

Automatic Building Extraction from Lidar Data Covering Complex Urban Scenes

This paper presents a new method for segmentation of LIDAR point cloud data for automatic building extraction. Using the ground height from a DEM (Digital Elevation Model), the non-ground points (mainly buildings and trees) are separated from the ground points. Points on walls are removed from the set of non-ground points by applying the following two approaches: If a plane fitted at a point an...

متن کامل

Automatic extraction of building roofs using LIDAR data and multispectral imagery

Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separa...

متن کامل

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Building Roof Segmentation and Reconstruction from Lidar Point Clouds Using Clustering Techniques

This paper presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using clustering techniques. A building point cloud is first separated into planar and breakline sections using the eigenvalues of the covariance matrix in a small neighbourhood. The planar components from the point cloud are then grouped into small patches containing 6-8 points and their nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013